
Performance Benchmark of Modelica Time-Domain Power System
Automated Simulations using Python

Sergio A. Dorado-Rojas Manuel Navarro Catalán Marcelo de Castro Fernandes Luigi Vanfretti

Department of Electrical, Systems and Computer Engineering
Rensselaer Polytechnic Institute

Troy, NY, USA
{dorads, navarm2, decasm3, vanfrl}@rpi.edu

Abstract
In this paper, a benchmark between solvers and Mod-
elica tools for time-domain simulations of a power sys-
tem model is presented. A Python-based approach is em-
ployed to automate Modelica simulations and compute
performance metrics. This routine is employed to com-
pare the performance of a commercial (Dymola) against
an open-source (OpenModelica) simulation tool with dif-
ferent solver settings. Python scripts are developed to exe-
cute a dynamic simulation of a common model for power
system studies with 49 states and 420 variables in three
different scenarios. This degree of automation makes it
easier to change solver settings and tools during execution.
The performance of each of the tools is assessed through
metrics such as execution time and CPU utilization. The
quantitative comparison results provide a clear reference
to the performance of the tools and solvers for the execu-
tion of time-domain simulations with a significant degree
of complexity. The commercial tool offers better perfor-
mance for variable-step solver, but the performance of the
open-source software shows significantly faster results for
fixed-step solvers.
Keywords: Modelica, Python-Dymola Interface, Python-
OpenModelica Interface, CPU performance.

1 Introduction

List of Acronyms and Definitions

Definitions

ST · Simulation Time: the simulation time is under-
stood as the time it takes for the program to translate, com-
pile and integrate a model.

ET · Execution Time: the execution time is the elapsed
time to complete the numerical integration of the compiled
model. It also known as integration time. Note that exe-
cution time is included as a part of Simulation Time in the
context of this paper.

NMT · Normalized Minimum Execution Time: per-
formance metric taken as a function of the execution time
of each of the tools. It is defined as

NMT[solver] =
min(ETD,ETOM)

ETobserved

where ETD are the execution times for Dymola and OM,
respectively, and ETobserved is the corresponding integra-
tion time of each tool for a given solver obtained from the
simulation log.

Acronyms

ET · Execution Time
MSE ·Mean Square Error
NAE · Normalized Absolute Error
OM · OpenModelica
OMPython · OpenModelica Python Interface
OpenIPSL · Open-Instance Power System Library
PDI · Python-Dymola Interface
ST · Simulation Time

Motivation
Modeling and simulation of power systems have been a
habitual practice in the energy industry since the 1960s.
The complexity of a power system is steadily increasing
to accommodate modern technologies into the existing
grid. A more complex system leads to more elaborated
models. High-complexity models are directly correlated
with computationally expensive tasks (Milano, 2010). In
this context, the Modelica language represents an ac-
curate, equation-based, multi-domain solution modeling
and simulation alternative. Numerous initiatives such as
OpenIPSL have been taken to incorporate into the power
system workflow the benefits of the Modelica language
(Baudette et al., 2018).

On the other hand, the academic, scientific and indus-
trial communities have come to acknowledge the intrinsic
benefits of the Modelica language. An outcome of this
trend is that the user base has increased significantly dur-
ing the last years. This has led to the development of many
libraries with users coming from a very wide domain spec-
trum. Nowadays, Modelica stakeholders include students,
consulting firms, big laboratories, and industry agents.

Free tools such as OpenModelica are fundamental for
learning the language at little to no cost and to set a ref-
erence for the Modelica language (Fritzson et al., 2006).

Commercial tools such as Dymola, SystemModeler or
SimulationX provide advanced functionalities that satisfy
particular requirements from the industry. However, there
is no clear guidance for a user on how to select the tool-
solver based on its simulation performance exclusively.

This paper intends to provide this guidance. It aims to
compare the time-domain simulation performance of the
solvers from both Dymola and OpenModelica when sub-
jected to different solver settings (see (Braun et al., 2017)
for a detailed analysis of the potential of OpenModelica
to solve large-scale models). Since these tools do not have
the same features and solvers, we have chosen some of the
ones they have in common for benchmarking purposes.

Contribution
This work is relevant to any user of the Modelica lan-
guage. The tool performance analysis is based on the sim-
ulation of a power system model (IEEE 14 bus system),
that serves as a representation of a dynamic nonlinear sys-
tem. We consider three simulation scenarios: an initial-
ization, a line-opening (one discrete event) and two bus
faults (two discrete events). The paper reveals the differ-
ence in performance within the tools and helps users make
an educated choice about the tools to use. The main con-
tributions of the paper are the following:

• Quantitative evaluation of Dymola and OpenModel-
ica simulation performance for time-domain simula-
tion of complex dynamic systems (power systems).
• Benchmark of different solvers in a dynamic simula-

tion with discrete events.
• Implementation of simple Python routines to auto-

mate Dymola and OpenModelica time-domainThe
simulations.

Paper Organization
The paper is broken down in the following sections: Sec-
tion 2 describes the test system and the Modelica library
employed to construct it. The experiment setup regarding
hardware characteristics and software setup is described
in Section 3. In Sections 4 and 5, we discuss performance
results of each of the tools with respect to each solver and
the corresponding performance metrics. Finally, Section
6 concludes the work.

2 Modelica Power System Model
The IEEE14 bus system1 represents a part of the Midwest-
ern USA American Electric Power System as of February
of 1962. The single-line diagram of the system can be
seen in Figure 1. This model was chosen because it is
a widely used testing system for an initial assessment in
power system dynamical studies since it has a significant
number of variables and states (420 and 49, respectively)
which makes it a common factor in such simulation-based

1https://icseg.iti.illinois.edu/ieee-14-bus-system/

studies (Milano, 2010). For this reason, its dynamic sim-
ulation a challenge to the tools and the CPU.

<1><1>

<11><11>

<9><9>

<6><6>

<5><5> <4><4>

<3><3><2><2>

<7><7>

<13><13> <10><10>

<14><14>

<8><8>

<12><12>

L5L5

L3L3
L6L6

L8L8

L2L2

L10 L10

L11 L11

L12 L12

L17 L17

L14 L14

L15 L15
L16 L16

L7L7

L1L1

pwLinepwLine

Figure 1. IEEE 14 bus model.

The test power system model (Figure 2) is built using
the components from the open-source OpenIPSL library,
a Modelica-based power system component library cur-
rently developed and maintained by ALSETLab at Rens-
selaer Polytechnic Institute. The library includes all the
components to build a large power system model and per-
form dynamic analysis in time- and phasor-domain. The
version of the library used in this paper is release 1.5.02.

Figure 2. Implementation of the IEEE 14 bus model in Dymola
using OpenIPSL.

3 Experiment Specifications
To make sure that the results are reproducible, this section
details the conditions under which the experiments were
performed regarding hardware setup and software charac-
teristics.

2The version of the library employed for this paper is included in the
GitHub repository of the project. For the latest release of OpenIPSL,
see: https://github.com/OpenIPSL/OpenIPSL

3.1 Hardware and Software Setup

The characteristics of the computer used to run the simu-
lations are shown in Table 1.

Characteristic
Operating

System Ubuntu Server 18.04 LTS

RAM 128 GB

Processor Intel(R) Xeon(R) CPU E-1650 v4
12 Cores @ 3.60 GHz

15 MB Cache
Storage 1 TB SSD

Graphics
Cards

4 x NVIDIA GTX 1080 Ti
(CUDA Capable)

11 GB GDDR5X (each)
Dymola

Distribution Dymola 2020x

OpenModelica
Distribution 1.14.0

Python
Release 3.6.8

Dymola
Compiler MinGW CC

OpenModelica
Compiler MinGW CC

Table 1. Hardware characteristics and software specifications of
the computer used to run the experiment.

To assess solver performance correctly, numerical
integration must run in only one processor. While
this is a default option in Dymola, we need to
specify this option explicitly in OpenModelica be-
fore starting any simulation since it defaults to multi-
core execution. This is done thanks to the flag
setCommandLineOptions("-n=1").

3.2 Simulation Scenarios

To properly measure solver performance in diverse dy-
namic conditions, we will consider the following three
scenarios of the IEEE14 bus model: system initialization,
time-domain simulation with one line opening, and sys-
tem response with two faults.

IEEE14 System Initialization (S1)

This scenario corresponds to a system with no disturbing
events. The power flow of the model is modified so that
the numerical simulation has problems during initializa-
tion. The provided initial conditions are such that the dy-
namic system is not initially at an equilibrium point, thus
forcing the system to look for an acceptable steady-state
condition at the beginning of the integration process. This
increases the computational task and challenges the solver
since the integration does not start with all state derivatives
equal to zero.

Line Opening (S2)

Besides the aforementioned bad initialization condition,
we introduce a line opening to disturb the system from
steady-state and excite nonlinear dynamics. This kind
of scenario is used to study system-wide stability when
two sub-areas are disconnected from each other. The line
opening corresponds to the connection between buses 2
and 4 (B2 and B4). The line will open from both ends at
time t = 60 s and will re close at t = 61.5 s.

Bus Faults (S3)

In this case, the system will face two three-phase to ground
faults at different times. This configuration is used to
test the resiliency and stability of the system. By having
two faults, the numerical complexity of the simulation in-
creases, creating a more adverse scenario for the solvers
to come up with a solution. Fault 1 occurs at bus 4 (B4)
starting at t = 20 s and being removed at t = 21.2 s. Fault
2 takes place at bus 14 (B14) at t = 80 s, being cleared at
t = 81.2 s. The parameters of the two faults are R = 0 pu
and X = 1×10−5 pu.

3.3 Solver Selection
The performance of the time-domain simulation depends
not only on the dynamic condition to be analyzed but also
on the solver selection. In this regard, OpenModelica
and Dymola contain a wide variety of different integration
methods and three of them are going to be used and thus
briefly described in this study. The Differential Algebraic
System Solver (dassl) is an implicit, high-order, variable-
step solver with time-step control. This solver is set as
default solver in both OpenModelica and Dymola. The
Euler method is another solver available in both software
packages and it is an explicit (Forward Euler), first-order,
fixed time-step solver. Finally, the last solver used in this
study is the runge kutta. Dymola allows the user to chose
between second, third and fourth order Runge-Kutta meth-
ods but in this work, only the fourth order is used since it
is also available in OpenModelica. This solver is an ex-
plicit, fourth-order, fixed time-step solver. This paper will
benchmark the performance of the tools with each of the
mentioned solvers for the different scenarios of the test
power system.

3.4 Time-step Selection
Since dassl is a variable-step solver with step-size con-
trol, there is no need to select a specific time-step
for the solver. The selection of an adequate number
of intervals is necessary to plot and analyze the re-
sults. For both tools, 5000 was found to be a rea-
sonable number of simulation intervals. Moreover, to
use the capabilities of a DAE solver to their full extent,
we enable the newly incorporated DAEmode in Dymola
by enabling the flag Advanced.Define.DAEsolver
= true (Henningsson et al., 2019). In OpenMod-
elica, to set similar settings we use the command
setCommandLineOptions("daeMode=true").

On the other hand, it is important to select an adequate
step size Ts for fixed-step solvers in order to guarantee
that the algorithm is operating in its region of conver-
gence. To get an upper bound for Ts, we performed a linear
analysis of the system in Dymola employing the library
Modelica_LinearSystems2. After determining the
time constant of the fastest mode (τ ≈ 1 ms), we found
that Ts = 0.5 ms was a reasonable value to capture the
effects of the fastest mode, guaranteeing numerical con-
vergence for both solvers, Euler and Runge Kutta. The
selected time-step size implies that 240,000 simulation in-
tervals are going to be needed for a simulation time of
120 s.

3.5 Benchmark Metrics
In order to understand and accurately compare the two
tools the paper focuses on two simulation features to com-
pare:

• Simulation Time (ST) corresponds to the time it takes
for a program to complete all of the routines for each
scenario comprising model translation, compilation
and execution. The discussion of the results of the
simulation time are found in Section 4.1, with special
remark on Execution Time (ET).
• CPU Utilization is the percentage of central process-

ing unit (CPU) that is being used at any time dur-
ing the execution. Results for CPU utilization can be
found in Section 4.2.

3.6 Code Structure
The complete code to perform the experiments and ana-
lyze the resulting data can be found in GitHub3. The ex-
ecution of the simulations is automated through Python
using the Dymola API (Python-Dymola Interface) and
the OpenModelica Python Interface (OMPython) (Lie
et al., 2018). The details of the Dymola routine can
be seen in the file dymola_simulation.py. Like-
wise, the OpenModelica commands are included in the file
om_simulation.py.

To measure performance we execute the routine in
the script measurement_performance.py. It mea-
sures each of the performance metrics every 0.2 s
while the code is running in a different parallel pro-
cess. The main program is contained in the file
01_modelica_tool_performance_benchmark.py.

4 Performance Results
Before presenting the performance results, we validate the
simulation outputs of the three scenarios for Dymola and
OpenModelica for all solvers. We employed the Normal-
ized Absolute Error (NAE) and the Mean Square Error
(MSE) defined in Equation (1) to quantify the numerical
difference between the outcomes of each tool.

3https://github.com/ALSETLab/Time-Domain-Simulation-
Performance-Benchmark

NAE =
|xi− yi|

n

MSE =
n

∑
i=1

(xi− yi)
2

n

(1)

NAE shows how different the Dymola and OpenMod-
elica results are throughout the simulation. MSE outputs a
quantitative validation of the results of both tools (Devore
and Berk, 2012). Full details can be seen in Table 3.

The numerical behavior of the simulation during initial-
ization (runge kutta solver) can be observed in Figure 3 for
the voltage magnitude signal at Buses 2 and 4. An initial
transient behavior can be seen at the beginning of the inte-
gration time. This is not desired in a dynamic simulation
since numerical convergence to a steady-state solution is
not guaranteed given the fact that the solver starts from a
guessing point with non-zero derivatives.

Figure 3. Comparison between Dymola and OpenModelica re-
sults for the initialization scenario using the runge kutta solver

The non-steady state behavior at the on-set of the simu-
lation is due to the fact the initial guess used in the model
(the so-called power flow) is not close enough to an equi-
librium for the initialization routine to solve for a more
precise set of initial values. A more complex initializa-
tion problem will better benchmark the capabilities of the
tools. Despite this, Dymola and OM produce almost the
same results, with an NAE in the order of 10−3.

Likewise, for the runge kutta solver, Figures 4 and 5
show the simulation results for the line opening (voltage
magnitude at buses 2 and 4) and the double bus fault (volt-
age at affected buses 4 and 14) scenarios, respectively.
Both Figures reveal how there is a minimal error between
the results of both tools. Based on these results, it is con-
cluded that fixed-step solvers can be applied to reduce dis-
crepancies between different Modelica tools.

Figure 4. Comparison between Dymola and OpenModelica re-
sults for the line opening scenario using the runge kutta solver

Figure 5. Comparison between Dymola and OpenModelica re-
sults for the double bus fault scenario using the runge kutta
solver

The complete collection of plots for all solvers and sim-
ulation scenarios can be found online in the GitHub repos-
itory in the Notebook 02_Data_PostProcessing_
SimulationResultPlotting.ipynb.

4.1 Simulation Time
The information regarding simulation time is presented for
all scenarios and solvers in Table 2. We must underline
that simulation time includes compilation, translation and
actual integration (execution time).

A clear conclusion from this information is that the
variable-step solver is the most convenient for an initial
analysis of the conditions of the system with an important
amount of detail. Nevertheless, considering the informa-
tion about MSE, a fixed-step solver shows advantages to
reduce the numerical discrepancy between tools running
the same model. The cost is a considerable increase in
simulation time.

4.2 CPU Utilization
Since each instance of Dymola/OpenModelica was con-
strained to run only on one core, we expect exactly
one processor to be responsible for numerical integration
while a simulation is being carried out. The CPU usage
of the assigned execution core is 100% due to the heavy
numerical task of the simulation.

Figure 6. CPU Utilization for Dymola during bus fault scenario
with runge kutta solver.

Figure 7. CPU Utilization for OpenModelica during line open-
ing scenario with euler solver.

An interesting outcome of our experiments is that sev-
eral CPUs are involved in the execution process but just
one is performing the simulation tasks at a given time. We
can detail this behavior in Figure 6 for a Dymola simu-
lation using the runge kutta method of the bus fault sce-

nario. Simulation starts in Core 1 where the CPU usage is
at a 100% at the beginning of the running time. Afterward,
it is delegated to Core 5. Finally, Core 10 completes the
execution of the program. This behavior is due to a task
scheduling routine in the processor level that dispatches
to different cores the compilation, translation, and inte-
gration sub tasks.

Similar behavior happens with another solver and
OpenModelica (Figure 7) in which the simulation started
in Core 2, then was briefly assigned to Core 5 and was
finished in Core 6. All the graphics can be detailed in
the GitHub repository inside the Jupyter Notebook called
03_DataPostprocessing_CPU_Usage.ipynb.

5 Performance Evaluation Metrics
A score was proposed to quantify the performance dif-
ferences between the tools and the solvers. The score is
obtained from the data generated for all simulations and
solvers. This single metric makes it simpler to directly
compare the performance of Dymola versus OpenMod-
elica. From Table 2 the Execution Time (ET) for each
scenario and solver were employed. These metrics were
obtained directly from the program logs and measured in
Python. Notice that the time registered using OMPython
is slightly larger than the reported by the simulation log
due to the communication interface between Python and
OM. The translation and compilation time were not taken
into account since this information is only available in the
Dymola developer version, not in the release version.

The Normalized Minimum Execution Time score
(NMT) of each scenario per solver is computed as

NMT[solver] =
min(ETD,ETOM)

ETobserved
(2)

where ETobserved is the ET for a particular solver in Dy-
mola or OpenModelica), and min(ETD,ETOM) is the min-
imum execution time between both tools for a specific
solver. Clearly, NMT[solver] lies between 0 and 1. The
higher the NMT is, the faster the simulation will run for
a particular selected solver. At a first glance, this metric
might be counter-intuitive since a better solver/tool com-
bination would reduce execution time. However, we pro-
pose an increasing score metric due to the fact that users
are more familiar to higher scores for better performance.
Therefore, the larger the NMT is, the faster a particular
solver will run.

The NMT metric results are presented in Table 4. The
performance of Dymola is remarkably better using dassl.
Nevertheless, OM shows a smaller execution time than
Dymola for fixed-step solvers (as can be seen from Table
2, the NMT scores and 5). This conclusion can be further
detailed in Table 5 where a direct comparison between the
execution time for the tools with the different solvers for
each scenario is presented.

The NMT scores highlight that the performance of Dy-
mola in terms of execution time is remarkably better for

variable-step solvers. The relative advantage of select-
ing one tool with respect to the other can be computed
from the NMT directly. For instance, Dymola runs 47.3x
faster than OM for the first scenario using dassl which can
be computed by a direct comparison of the ET listed in
Table 5. The NMT score of OM for S1 is 0.0211 which
is 1/0.0211 = 47.3 times smaller than the corresponding
Dymola metric reflecting the relative difference in execu-
tion time.

For the variable-step solver, the discrepancy between
the tools can be attributed to the performance of the dassl
solver in all simulations thanks to the aforementioned im-
provements for DAEMode inside Dymola (Henningsson
et al., 2019).

The execution time of OM is faster than the one of Dy-
mola for all scenarios when a fixed-step solver is used.
The NMT scores show a relative advantage between 3.4
and 6.8 times favoring OM. We have contacted Dassault
Systèmes about the performance of the simulations of the
IEEE 14 Bus System using runge kutta methods (includ-
ing euler) as integrator and GCC for compilation. Das-
sault reports that bug fixes have been made in the GCC
runtime libraries, leading to CPU times are about 3 – 4
times faster, on par with the run times given when com-
piling with Visual Studio under Windows 10. Dassault
informs that the updated libraries will be part of Dymola
2021.

We should point out that the scope on the po-
tential optimization features has been limited to the
use of the flag Evaluate = true in Dymola and
-d=evaluateAllParameters in OM, which is stan-
dard practice when attempting to improve simulation per-
formance.

The detailed step-by-step computations of the
scores can be found in GitHub in the Notebook
05_BenchmarkMetrics.ipynb.

6 Conclusions and Future Work
The paper presents a concrete analysis of the time-domain
simulation performance of Modelica-based tools for dif-
ferent solvers in the context of large-scale nonlinear dy-
namic systems. The presented results can help a user to
choose a tool depending on the final application, and lead
to improvements in Modelica tools. The methodology of
this benchmark can be extended to virtually any platform
or Modelica tool.

We benchmarked the time-domain simulation perfor-
mance of two popular Modelica tools, Dymola and Open-
Modelica, for a dynamic power system simulation using
the IEEE 14 bus system. We considered several scenar-
ios that challenge numerical solvers differently. Thanks
to Python scripting, we were able to change automatically
the simulation settings while directly measuring the per-
formance of the computer instead of relying on simulation
logs. Python functions also made it quicker to analyze
straightforwardly the big set of data regarding simulation

results and computer performance.
For the proposed heuristic score, we found out that

OpenModelica performs better than Dymola in terms of
execution time for fixed-step solvers while Dymola shows
faster results when using a variable-step solver (see Ta-
ble 5). Despite this, we must warn the reader that this
conclusion is based upon only a particular system. Fur-
ther research has to be done to include more test systems.
Moreover, the use of a fixed-step solver has the main ad-
vantage of

The tool and solver benchmark results are expected to
be reproduced in a larger system such as the Nordic 44
with ≈ 1300 states and 6300 variables. This system re-
quires a considerable amount of RAM given its large num-
ber of states. Therefore, future work is related to the per-
formance analysis in a 64-core machine with 512 GB of
RAM for the N44 system considering different types of
simulations and various initialization parameters.

Acknowledgments
This work was funded in part by New York Power Author-
ity (NYPA) and the New York State Energy Research and
Development Agency (NYSERDA) through the Electric
Power Transmission and Distribution (EPTD) High Per-
forming Grid Program under agreement 137940.

The authors would like to thank Erik Henningsson from
Dassault Systèmes for his valuable contributions for the
improvement of the results of this paper.

References
Maxime Baudette, Marcelo Castro, Tin Rabuzin, Jan Lavenius,

Tetiana Bogodorova, and Luigi Vanfretti. OpenIPSL: Open-
Instance Power System Library - Update 1.5 to iTesla Power
Systems Library (iPSL): A Modelica library for phasor time-
domain simulations. SoftwareX, 7:34–36, jan 2018. ISSN
23527110. doi:10.1016/j.softx.2018.01.002.

Willi Braun, Francesco Casella, and Bernhard Bachmann. Solv-
ing large-scale Modelica models: new approaches and exper-
imental results using OpenModelica. In Proceedings of the
12th International Modelica Conference, Prague, Czech Re-
public, pages 557–563, jul 2017. doi:10.3384/ecp17132557.
URL http://www.ep.liu.se/ecp/article.
asp?issue=132{%}26article=63.

J. L Devore and K. N. Berk. Modern Mathematical Statistics
with Applications. Springer-Verlag New York, 2012.

Peter Fritzson, Peter Aronsson, Adrian Pop, Hakan Lundvall,
Kaj Nystrom, Levon Saldamli, David Broman, and Anders
Sandholm. Openmodelica-a free open-source environment
for system modeling, simulation, and teaching. In 2006
IEEE Conference on Computer Aided Control System De-
sign, 2006 IEEE International Conference on Control Appli-
cations, 2006 IEEE International Symposium on Intelligent
Control, pages 1588–1595. IEEE, 2006.

Erik Henningsson, Hans Olsson, and Luigi Van-
fretti. DAE Solvers for Large-Scale Hybrid Mod-

els. In Proceedings of the 13th International Mod-
elica Conference, Regensburg, Germany, pages 491–
502, feb 2019. doi:10.3384/ecp19157491. URL
http://www.ep.liu.se/ecp/article.asp?
issue=157{%}26article=50.

Bernt Lie, Sudeep Bajrachary, Alachew Mengist, Lena Buffoni,
Arun Kumar, Martin Sjölund, Adeel Asghar, Adrian Pop, and
Peter Fritzson. Api for accessing openmodelica models from
python. In Proceedings of The 9th EUROSIM Congress on
Modelling and Simulation, EUROSIM 2016, The 57th SIMS
Conference on Simulation and Modelling SIMS 2016, pages
707–714. Linköping University Electronic Press, 2018.

Federico Milano. Power System Modelling and Scripting,
volume 54 of Power Systems. Springer Berlin Heidel-
berg, Berlin, Heidelberg, 2010. ISBN 978-3-642-13668-
9. doi:10.1007/978-3-642-13669-6. URL http://link.
springer.com/10.1007/978-3-642-13669-6.

https://doi.org/10.1016/j.softx.2018.01.002
https://doi.org/10.3384/ecp17132557
http://www.ep.liu.se/ecp/article.asp?issue=132{%}26article=63
http://www.ep.liu.se/ecp/article.asp?issue=132{%}26article=63
https://doi.org/10.3384/ecp19157491
http://www.ep.liu.se/ecp/article.asp?issue=157{%}26article=50
http://www.ep.liu.se/ecp/article.asp?issue=157{%}26article=50
https://doi.org/10.1007/978-3-642-13669-6
http://link.springer.com/10.1007/978-3-642-13669-6
http://link.springer.com/10.1007/978-3-642-13669-6

Appendix
In this appendix, all performance results of the different simulation experiments are presented. In Table 5, runge-kutta
is abbreviated as rk.

Simulation Time OpenModelica (OM)
Translation Compilation Execution Total Time (OM log) OMPython

S 1

dassl 2.3204 s 6.6270 s 7.8690 s 16.8164 s 19.3451 s
euler 2.5432 s 6.5845 s 277.5495 s 286.6772 s 289.2878 s

rk 2.3495 s 6.6213 s 783.0159 s 791.9867 s 794.6805 s

S 2

dassl 2.6079 s 6.6411 s 13.4004 s 22.6494 s 25.2542 s
euler 2.4023 s 6.6437 s 310.1061 s 319.1521 s 321.7222 s

rk 2.3489 s 6.6591 s 1086.3958 s 1095.4040 s 1098.0253 s

S 3

dassl 2.1952 s 6.7301 s 163.4884 s 172.4137 s 175.2962 s
euler 2.3248 s 6.7801 s 378.6069 s 387.7118 s 390.3140 s

rk 2.3960 s 6.7332 s 1344.6808 s 1353.8100 s 1356.2994 s

Simulation Time Dymola Simulation Time Dymola
Translation
+ Compila-

tion
Execution Measured

Python

Translation
+ Compila-

tion
Execution Measured

Python

S 1

dassl 20.186 s 0.1664 s 20.3524 s
S3

dassl 20.2161 s 14.4098 s 34.6260 s
euler 24.7791 s 1880.0109 s 1904.7900 s euler 16.4581 s 1820.0119 s 1836.47 s

rk 21.2389 s 4420.0125 s 4441.2514 s rk 17.9956 s 4590.0129 s 4608.0085 s

S 2

dassl 20.2363 s 0.34082 s 20.5772 s
euler 19.6561 s 1850.0129 s 1869.6690 s

rk 24.6567 s 4410.0119 s 4434.6686 s

Table 2. Execution time for Dymola and OpenModelica for each simulation scenario using different solvers.

Mean Squared Error (MSE) Mean Squared Error (MSE)
B2 B4 B1 B4

S 1

dassl 3.0011×10−11 4.6482×10−11

S3

dassl 0.0067 0.0002
euler 1.2894×10−11 3.7950×10−11 euler 0.0025 0.0002

rk 1.2853×10−11 3.7828×10−11 rk 0.0018 0.0002

S 2

dassl 1.1728×10−8 1.1267×10−7

euler 2.3598×10−10 3.2470×10−9

rk 2.3579×10−10 3.2473×10−9

Table 3. Mean Square Errors between voltage magnitude signals at different buses for each simulation scenario.

Dymola OpenModelica
NMT[S1] NMT[S2] NMT[S3] NMT[S1] NMT[S2] NMT[S3]

dassl 1 1 1 0.0211 0.0254 0.0880
Euler 0.148 0.168 0.208 1 1 1

rk 0.177 0.296 0.293 1 1 1

Table 4. Normalized Minimum Execution Time scores.

Execution Time (ET) Execution Time (ET)
OM Dymola Result OM Dymola Result

S 1

dassl 7.869 s 0.1664 s D > OM (47.3x)
S3

dassl 163.48 s 14.40 s D > OM (11.3x)
euler 277.54 s 4420.01 s OM > D (6.8x) euler 378.60 s 1820.01 s OM > D (4.8x)

rk 783.01 s 1880.01 s OM > D (5.6x) rk 1344.68 s 4590.01 s OM > D (3.4x)

S 2

dassl 13.40 s 0.3408 s D > OM (39.3x)
euler 310.10 s 1850.01 s OM > D (6.0x)

rk 1086.39 s 4410.01 s OM > D (4.1x)

Table 5. Comparison between execution time in OM and Dymola for different solvers.

	Introduction
	Modelica Power System Model
	Experiment Specifications
	Hardware and Software Setup
	Simulation Scenarios
	Solver Selection
	Time-step Selection
	Benchmark Metrics
	Code Structure

	Performance Results
	Simulation Time
	CPU Utilization

	Performance Evaluation Metrics
	Conclusions and Future Work

